Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 606(7914): 565-569, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650430

RESUMO

Flowering plants (angiosperms) can grow at extreme altitudes, and have been observed growing as high as 6,400 metres above sea level1,2; however, the molecular mechanisms that enable plant adaptation specifically to altitude are unknown. One distinguishing feature of increasing altitude is a reduction in the partial pressure of oxygen (pO2). Here we investigated the relationship between altitude and oxygen sensing in relation to chlorophyll biosynthesis-which requires molecular oxygen3-and hypoxia-related gene expression. We show that in etiolated seedlings of angiosperm species, steady-state levels of the phototoxic chlorophyll precursor protochlorophyllide are influenced by sensing of atmospheric oxygen concentration. In Arabidopsis thaliana, this is mediated by the PLANT CYSTEINE OXIDASE (PCO) N-degron pathway substrates GROUP VII ETHYLENE RESPONSE FACTOR transcription factors (ERFVIIs). ERFVIIs positively regulate expression of FLUORESCENT IN BLUE LIGHT (FLU), which represses the first committed step of chlorophyll biosynthesis, forming an inactivation complex with tetrapyrrole synthesis enzymes that are negatively regulated by ERFVIIs, thereby suppressing protochlorophyllide. In natural populations representing diverse angiosperm clades, we find oxygen-dependent altitudinal clines for steady-state levels of protochlorophyllide, expression of inactivation complex components and hypoxia-related genes. Finally, A. thaliana accessions from contrasting altitudes display altitude-dependent ERFVII activity and accumulation. We thus identify a mechanism for genetic adaptation to absolute altitude through alteration of the sensitivity of the oxygen-sensing system.


Assuntos
Aclimatação , Altitude , Arabidopsis , Oxigênio , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigênio/metabolismo , Pressão Parcial , Protoclorifilida/metabolismo
2.
Mol Plant ; 12(1): 71-85, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30419294

RESUMO

A key component of seed germination is the interplay of mechanical forces governing embryo growth and the surrounding restraining endosperm tissue. Endosperm cell separation is therefore thought to play a critical role in the control of this developmental transition. Here we demonstrate that in Arabidopsis thaliana seeds, endosperm cell expansion is a key component of germination. Endosperm cells expand to accommodate embryo growth prior to germination. We show that this is an actively regulated process supported by spatiotemporal control of the cell expansion gene EXPANSIN 2 (EXPA2). The NAC transcription factors NAC25 and NAC1L were identified as upstream regulators of EXPA2 expression, gibberellin-mediated endosperm expansion, and seed germination. The DELLA protein RGL2 repressed activation of the EXPA2 promoter by NAC25/NAC1L. Taken together, our findings uncover a key role of the GA/DELLA-NAC25/NAC1L-EXPA2 network in regulating endosperm cell expansion to control the seed-to-seedling transition.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Endosperma/metabolismo , Giberelinas/metabolismo , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação , Sementes/genética , Sementes/metabolismo
3.
Plant Biotechnol J ; 14(1): 40-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25657015

RESUMO

Increased tolerance of crops to low oxygen (hypoxia) during flooding is a key target for food security. In Arabidopsis thaliana (L.) Heynh., the N-end rule pathway of targeted proteolysis controls plant responses to hypoxia by regulating the stability of group VII ethylene response factor (ERFVII) transcription factors, controlled by the oxidation status of amino terminal (Nt)-cysteine (Cys). Here, we show that the barley (Hordeum vulgare L.) ERFVII BERF1 is a substrate of the N-end rule pathway in vitro. Furthermore, we show that Nt-Cys acts as a sensor for hypoxia in vivo, as the stability of the oxygen-sensor reporter protein MCGGAIL-GUS increased in waterlogged transgenic plants. Transgenic RNAi barley plants, with reduced expression of the N-end rule pathway N-recognin E3 ligase PROTEOLYSIS6 (HvPRT6), showed increased expression of hypoxia-associated genes and altered seed germination phenotypes. In addition, in response to waterlogging, transgenic plants showed sustained biomass, enhanced yield, retention of chlorophyll, and enhanced induction of hypoxia-related genes. HvPRT6 RNAi plants also showed reduced chlorophyll degradation in response to continued darkness, often associated with waterlogged conditions. Barley Targeting Induced Local Lesions IN Genomes (TILLING) lines, containing mutant alleles of HvPRT6, also showed increased expression of hypoxia-related genes and phenotypes similar to RNAi lines. We conclude that the N-end rule pathway represents an important target for plant breeding to enhance tolerance to waterlogging in barley and other cereals.


Assuntos
Adaptação Fisiológica , Hordeum/genética , Hordeum/fisiologia , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Água , Alelos , Sequência de Aminoácidos , Clorofila/metabolismo , Cisteína/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Germinação/genética , Mutação/genética , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Estabilidade Proteica , Reação em Cadeia da Polimerase em Tempo Real , Sementes/genética , Especificidade por Substrato , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
4.
Plant Cell ; 23(9): 3101-16, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21896882

RESUMO

The meta-analysis of large-scale postgenomics data sets within public databases promises to provide important novel biological knowledge. Statistical approaches including correlation analyses in coexpression studies of gene expression have emerged as tools to elucidate gene function using these data sets. Here, we present a powerful and novel alternative methodology to computationally identify functional relationships between genes from microarray data sets using rule-based machine learning. This approach, termed "coprediction," is based on the collective ability of groups of genes co-occurring within rules to accurately predict the developmental outcome of a biological system. We demonstrate the utility of coprediction as a powerful analytical tool using publicly available microarray data generated exclusively from Arabidopsis thaliana seeds to compute a functional gene interaction network, termed Seed Co-Prediction Network (SCoPNet). SCoPNet predicts functional associations between genes acting in the same developmental and signal transduction pathways irrespective of the similarity in their respective gene expression patterns. Using SCoPNet, we identified four novel regulators of seed germination (ALTERED SEED GERMINATION5, 6, 7, and 8), and predicted interactions at the level of transcript abundance between these novel and previously described factors influencing Arabidopsis seed germination. An online Web tool to query SCoPNet has been developed as a community resource to dissect seed biology and is available at http://www.vseed.nottingham.ac.uk/.


Assuntos
Arabidopsis/genética , Inteligência Artificial , Biologia Computacional , Germinação/genética , Transcriptoma , Algoritmos , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Internet , Funções Verossimilhança , Análise de Sequência com Séries de Oligonucleotídeos , Sementes/genética , Sementes/crescimento & desenvolvimento
5.
Phytochemistry ; 71(17-18): 2074-86, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20971483

RESUMO

Glucosinolates were analysed from herbarium specimens and living tissues from representative of all families of the Brassicales, following the phylogenetic schemes of Rodman et al. (1998) and Hall et al. (2002, 2004), including specimens of Akania, Setchellanthus, Emblingia, Stixis, Forchhammeria and members of the Capparaceae for which glucosinolate content had not previously been reported. The results are reviewed along with additional published data on glucosinolate content of members of the Brassicales. In addition to providing an overview of the evolution of glucosinolate biochemical diversity within the core Brassicales, there were three main findings. Firstly, the glucosinolate content of some 'orphan' taxa of the Brassicales, such as Setchellanthus and Emblingia were consistent with recent phylogentic analyses based upon DNA sequence comparisons, while further analyses of Tirania and Stixis is required. Secondly, methyl glucosinolate is found within the Capparaceae and Cleomaceae, but also, unexpectedly, within Forchhammeria, with implications for the biochemical and evolutionary origin of methyl glucosinolate and the phylogenetic relationships of Forchhammeria. Thirdly, whereas Old World Capparaceae contain methyl glucosinolate, New World Capparaceae, including New World Capparis, either contain methyl glucosinolates or glucosinolates of complex and unresolved structures, indicative of continued innovation in glucosinolate biosynthesis. These taxa may be productive sources of glucosinolate biosynthetic genes and alleles that are not found in the model plant Arabidopsis thaliana.


Assuntos
Brassicaceae , Glucosinolatos , Brassicaceae/química , Brassicaceae/classificação , Brassicaceae/genética , Variação Genética , Glucosinolatos/biossíntese , Glucosinolatos/química , Glucosinolatos/genética , Estrutura Molecular
6.
Proc Natl Acad Sci U S A ; 106(11): 4549-54, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19255443

RESUMO

The N-end rule pathway targets protein degradation through the identity of the amino-terminal residue of specific protein substrates. Two components of this pathway in Arabidopsis thaliana, PROTEOLYSIS6 (PRT6) and arginyl-tRNA:protein arginyltransferase (ATE), were shown to regulate seed after-ripening, seedling sugar sensitivity, seedling lipid breakdown, and abscisic acid (ABA) sensitivity of germination. Sensitivity of prt6 mutant seeds to ABA inhibition of endosperm rupture reduced with after-ripening time, suggesting that seeds display a previously undescribed window of sensitivity to ABA. Reduced root growth of prt6 alleles and the ate1 ate2 double mutant was rescued by exogenous sucrose, and the breakdown of lipid bodies and seed-derived triacylglycerol was impaired in mutant seedlings, implicating the N-end rule pathway in control of seed oil mobilization. Epistasis analysis indicated that PRT6 control of germination and establishment, as exemplified by ABA and sugar sensitivity, as well as storage oil mobilization, occurs at least in part via transcription factors ABI3 and ABI5. The N-end rule pathway of protein turnover is therefore postulated to inactivate as-yet unidentified key component(s) of ABA signaling to influence the seed-to-seedling transition.


Assuntos
Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Germinação , Transdução de Sinais , Ubiquitina-Proteína Ligases/fisiologia , Arabidopsis , Mutação , Aminoacil-RNA de Transferência , Plântula/fisiologia , Sacarose/metabolismo , Fatores de Transcrição
7.
J Exp Bot ; 57(11): 2805-14, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16844736

RESUMO

Comparative physiological analysis of mutant Arabidopsis seeds under defined environmental conditions was used to analyse the relative contributions of components of peroxisomal beta-oxidation in the control of seed germination potential. The COMATOSE (CTS) and KAT2 loci were shown to play essential roles in regulating germination and establishment potentials, whereas LACS6 and LACS7 loci only influenced establishment following germination. The viability and desiccation tolerance of three different mutant alleles of CTS were shown to be intermediate between that of dormant and non-dormant wild-type seeds. Analysis of ttg-1 cts-1 double mutant seeds demonstrated that the cts lesion did not influence after-ripening capacity. These data demonstrate the importance of peroxisomal beta-oxidation in the control of germination potential, but suggest that breakdown of stored lipid is not an important prerequisite for germination. A function is suggested for CTS following after-ripening within pathways related to the progression of germination prior to radicle emergence.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/embriologia , Germinação/fisiologia , Peroxissomos/metabolismo , Sementes/crescimento & desenvolvimento , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/fisiologia , Mutação , Oxirredução , Fenótipo , Canais de Potássio/metabolismo , Canais de Potássio/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Sementes/genética , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...